profile
Опубликовано 5 лет назад по предмету Геометрия от MoldyBread

В равнобедренной трапеции с острым углом 60° и периметром 144 см, диагональ делит среднюю линию на отрезки, разницы между которыми равно 16 см. Найдите основания трапеции.

  1. Ответ
    Ответ дан Andr1806
    Пусть стороны трапеции будут a и c, меньшее основание - b? большее основание - d. Отрезки, на которые делится средняя линия диагональю, проходящей из верхнего левого угла в правый нижний - x и y. Тогда имеем:
    х - y = 16, y = х -16. d =2*x (так как х - средняя линия треугольника с большим основанием. b =2*y (так как y - средняя линия треугольника с меньшим основанием трапеции. Тогда b = 2(х-16). В равнобочной трапеции высота, опущенная на большее основание, делит его на отрезки, равные полуразности и полусумме оснований. Полуразность оснований лежит против угла 30° в прямоугольном треугольнике, где гипотенуза - боковая сторона трапеции. Тогда (d-b)/2 = 2(x-x+16)/2 = 16. Итак, боковая сторона равна 16*2=32см.(как гипотенуза). Сумма двух оснований равна 144-2*32 = 80см.
    Имеем: d+b = 80cм, а d-b = 32см, отсюда 2d=112, d = 56cм. Ну и b = 80-56=24cм.
    Ответ: основания трапеции равны 24см и 56см.
    Рисунок добавлю.
    1. Ответ
      Ответ дан Andr1806
      Опечатка. y=[-16.
    2. Ответ
      Ответ дан MoldyBread
      А что это за скобка я не могу понять, каким образом вы это получили ?
    3. Ответ
      Ответ дан MoldyBread
      Тогда выходит -y= 16- х
    4. Ответ
      Ответ дан MoldyBread
      А все понял , спсибо
    5. Ответ
      Ответ дан Andr1806
      Скобка от того, что пальцы широкие....:))
Самые новые вопросы