profile
Опубликовано 6 лет назад по предмету Геометрия от Маришка1996

Ребята,очень нужно!!!!!Помогите пожалуйста. В прямоугольном треугольнике АВС катет равен 12, катет ВС равен 5. Найдите радиус окружности, которая проходит через концы гипотенузы треугольника и касается прямой ВС.

  1. Ответ
    Ответ дан cos20093

    В треугольнике катет 5, другой 12, значит гипотенуза 13. Если М - середина гипотенузы, то СМ = 6,5.

    Окружность проходит через точку С и касается ВС => она касается ВС в точке С;

    Поэтому центр окружности лежит на препендикуляре к ВС из точки С (пусть это ОС). 

    Кроме того, окружность проходит через точку А, поэтому центр О лежит на перпендикуляре к гипотенузе, проходящем через её середину М. 

    Осталось вычислить ОС = R.

    Рассмотрим треугольник СОМ. Угол МОС = угол САВ, угол ОМС прямой.

    Поэтому этот треугольник подобен исходному.

    OС/MC = AC/АB;

    R = MC*AC/AB = AC^2/(2*AB) = 13^2/24 = 169/24; 

    Это ответ.

     

Самые новые вопросы