profile
Опубликовано 5 лет назад по предмету Геометрия от Alonso44

В треугольниках АВС и МКЕ отрезки СО и ЕН медианы, ВС=КЕ, угол В равен углу К и угол С равен углу Е. Доказать, что треугольник АСО равен треугольнику МЕН. Помогите пожалуйста

  1. Ответ
    Ответ дан Groundhog

    В треугольниках ABC и MKE равны два угла (угол К - угол B и угол Е - угол С) и сторона между ними (ВС=КЕ) - треугольники АВС и МКЕ равны между собой. Значит, угол А равен углу М и АС=МЕ.

    Медианы делят сторону на 2 равные части. Так как медианы проведены к равным сторонам (СО к АВ, ЕН к МК), то и АО=МН. По 1 признаку (2 стороны и угол между ними) АСО=МЕН, ч. Т. Д.

Самые новые вопросы