profile
Опубликовано 5 лет назад по предмету Математика от pupurabbit

|x-1|-|x|+|2x+3|=2x-4
Естественно, нужно найти корни в действительных числах.
У меня получается ответ [-1,5;0], но этот ответ не сошелся с ответами учебника Ткачука (первое полное несовпадение у меня((((( (. Попрошу проверить, правильно ли я решил и если неправильно-поясните, как надо.

  1. Ответ
    Ответ дан dtnth
    Ищем критические точки (подмодульные выражения равны 0 для этих точек, переходя через подмодульное выражение меняет знак)

    x-1=0;x_1=1
    x=0;x_2=0
    2x+3=0;x_3=-1.5
    три точки разбивают прямую  на 4 интервала
    (-infty;-1.5) cup [-1.5;0) cup [0;1) cup (1;+infty)
    1) пусть 1 leq x
    |x-1|=x-1;|x|=x;|2x+3|=2x+3
    x-1-x+2x+3=2x-4
    0x=-6
    решений нет
    2) пусть 0 leq x <1
    |x-1|=1-x; |x|=x; |2x+3|=2x+3
    1-x-x+2x+3=2x-4
    2x=8
    x=8:2=4 - не попадает в рассматриваемый промежуток
    3) пусть -1.5 leq x <0
    |x-1|=1-x;|x|=-x;|2x+3|=2x+3
    1-x+x+2x+3=2x+4
    0x=0
    х - любое из разглядываемого промежутка
    т.е. х є [-1.5;0)
    4) пусть x<-1.5
    |x-1|=1-x; |x|=-x; |2x+3|=-2x-3
    1-x+x-2x-3=2x+4
    4x=-6
    x=-1.5 - не входит в рассматриваемый промежуток
    ответ: [-1.5;0)
    1. Ответ
      Ответ дан pupurabbit
      Согласен с ходом решения, но в моем ответе 0 входит в промежуток, почему вы его не взяли в промежуток, если точка входит в интервал
    2. Ответ
      Ответ дан pupurabbit
      Когда вы отмечаете критические точки, можно же повторять точки на промежутках, включая их в каждый, но у вас получается, что потерялся корень, либо я ошибаюсь
Самые новые вопросы