profile
Опубликовано 5 лет назад по предмету Геометрия от hollo27

Докажите , что площадь полукруга , построенного на гипотенузе прямоугольного треугольника равна сумме площадей полукругов, построенных на катетах.

  1. Ответ
    Ответ дан dmital
    Пусть катеты треугольника равны a и b, а гипотенуза равна c. Площадь круга с диаметром a будет равна πa²/4, так как радиус круга равен a/2. Тогда площадь полукруга с диаметром a равна πa²/8. Аналогично, площади полукругов с диаметрами b и c соответственно равны πb²/8 и πc²/8. Нам нужно доказать, что 
    πa²/8+πb²/8=πc²/8. Разделим обе части на π/8 и получим равенство a²+b²=c², которое следует из теоремы Пифагора, что и требовалось доказать.
    1. Ответ
      Ответ дан hollo27
      спасибо
Самые новые вопросы