profile
Опубликовано 6 лет назад по предмету Геометрия от munko

в цилиндр вписана призма. основанием призмы служит прямоугольный треугольник катет которого = 2а , а прилежащий угол = 60 градусов. Диагональ большей боковой грани призмы составляет с плоскостью его основания угол=45 градусов. найдите объём цилиндра

  1. Ответ
    Ответ дан Hrisula
    В цилиндр вписана призма.
    Основанием призмы служит прямоугольный треугольник,
    катет которого = 2а , а прилежащий угол = 60 градусов.
    Диагональ большей боковой грани призмы составляет с плоскостью его основания угол=45 градусов.
    Найдите объём цилиндра. 
     

    Объем цилиндра равен произведению высоты на площадь его основания.
    V=SH
    Обратим внмание на то, что в основании призмы лежит прямоугольный треугольник АВС c прямым углом С катет ВС которого прилежит к углу 60°, следовательно, противолежит углу 30°, и потому гипотенуза АВ этого треугольника равна двум таким катетам. 
    Гипотенуза прямоугольного треугольника - диаметр описанной около него окружности. 
    АВ=2*2а=4а
    R=4а:2=2а 
    Большая боковая грань - грань, горизонтальными сторонами которой служат диаметры оснований, т.е.  грань АВКН. 
    Т.к. диагональ  АК  большей грани с плоскостью основания составляет угол 45°, треугольник АКВ - прямоугольный равнобедренный, АВ=ВК , высота цилиндра  ВК равна диаметру основания и равна 4а.
     
    V=SH=πr²Н=π*4а²*4а=16πа³
Самые новые вопросы