profile
Опубликовано 5 лет назад по предмету Геометрия от degster3

Площадь равнобочной трапеции равна 1. найдите наименьшее значение диагонали

  1. Ответ
    Ответ дан dnepr1
    Площадь равнобочной трапеции с основаниями а и в равна площади равнобедренного треугольника с основанием (а+в).
    В этом треугольнике боковые стороны равны диагоналям трапеции.
    Если провести высоту h к основе, то боковая сторона как гипотенуза прямоугольного треугольника при равной площади имеет минимальную длину, если угол при основании равен 45 градусов.

    S = (1/2)h*(a+b).
    Е
    сли угол при основании равен 45 градусов, то h = (a+b)/2. (a+b) = 2h.
    Тогда S = (1/2)h*(2h) = h².
    Так как S = 1, то h = √1 = 1.

     (a+b)/2 =  h = 1, поэтому минимальная диагональ равна √(1²+1²) = √2.

Самые новые вопросы