profile
Опубликовано 5 лет назад по предмету Геометрия от bladoh14

ПОМОГИТЕ ПОЖАЛУЙСТА!!!!
в правильной треугольной пирамиде сторона основания равна 9√3 см а боковое ребро 15см вычислите площадь сечения проведенного через боковое ребро и высоту пирамиды

  1. Ответ
    Ответ дан vertebrid
    Сначала найдём высоту треугольника, лежащего в основании (она же является стороной треугольника-сечения). Треугольник в основании равносторонний, так как пирамида правильная. Применим одну из формул высоты равностороннего треугольника: h= а × √3/2 , где а - сторона.
    h= 9√3 × √3 /2 = 9 × 3 / 2 = 13,5 
    Теперь найдём параметры центра треугольника в основании пирамиды - это и будет та точка, в которой высота пирамиды делит высоту основания, образуя с ней прямой угол. Это важно для вычисления площади неправильного треугольника, которым и является искомое сечение пирамиды.
    В равностороннем треугольнике медианы пересекаются в центре, деля его высоты в соотношении 2:1 - 2 при угле, 1 при стороне.
    13,5 :3 =4,5 - часть высоты от центра до стороны.
    4,5 ×2 = 9 - часть высоты от угла до центра
    Таким образом мы имеем гипотенузу 15 и катет 9 прямоугольного треугольника, являющегося одной из двух частей сечения пирамиды. По теореме Пифагора найдём второй катет (Х-икс), являющийся высотой пирамиды.
    Х=√ (15²-9²)= √(225 - 81) = √144 = 12
    Теперь мы имеем все данные для вычисления площади сечения. Сечение состоит из 2х прямоугольных треугольников (треугольник сечения, разделенный высотой пирамиды на два других). А площадь прямоугольного треугольника равна 1/2 произведения сторон, прилежащих к прямому углу.
    S1=12×9 /2 =54   S2=12×4,5 /2 =27
    S1 + S2 = 54+27=81



Самые новые вопросы