profile
Опубликовано 5 лет назад по предмету Геометрия от prettyzhenya

в тетраэдре SABC на ребре AB выбрана точка K так, что AK:KB = 1:3. Через точку K параллельно прямым BC и AS проведена плоскость. Постройте сечение и вычислите его периметр, если BC=8 см и AS= 4 см.

  1. Ответ
    Ответ дан Hrisula


    Нарисуем пирамиду, проведем в ней сечение KLNM.
    Рассмотрим треугольники ВАС и КАМ.

    Они подобны, т.к. МК параллельна СВ, углы в них равны- один общий А, другие по свойству углов при пересечении параллельных прямых секущей.
    АК:КВ=1:3
    Отсюда АВ:АК=4:1
     СВ:КМ=4:1
    МК=8:4=2 см
    NL=MK=2 cм
    Рассмотрим треугольники SBA и KBL
    Они также подобны: в них равны- один общий угол В, другие по свойству углов при пересечении параллельных прямых секущей.
    АВ:АК=3:1 по условию задачи
    ВК:АВ=3:4
    KL:AS=3:4
    KL:4=3:4
    KL=NM= 3 см
    Периметр сечения равен
    Р=2(3+2)=10 см

Самые новые вопросы